Before you can repair a car, you have to know what each part is, what it does and how it fits together with other parts to power the vehicle. The body’s immune system is a powerful vehicle for fighting disease, and it is comprised of many parts with intricate and specific functions that make the system run. But the system can easily go off course, leading to cancer or autoimmune disease where the body attacks itself.
The immune system is extremely complex and influenced by many factors, including genetics and the environment. Scientists are still trying to understand how each independent part works so they can unlock ways to repair the immune system when it malfunctions.
In my lab, we study how the immune system develops normally. In particular, we focus on T cells and how they function within the immune system. T cells are formed in the thymus and help protect the body against infection and disease. For the immune system to function properly, T cells must recognize you but not react against you or your tissues. So, the thymus serves as a sort of university where T cells learn how they should function in the body.
Using a mouse model, we modify the T cells and observe what molecules and proteins are important in the immune system’s function. By blocking the development of T cells or altering other factors associated with them, we can make changes in the way the cells respond to one another. From what we observe, we hope to learn how T cells control the immune response and develop new methods for dealing with disease.